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Constructivism is a theory of learning which claims that students construct knowledge rather
than merely receive and store knowledge transmitted by the teacher. Constructivism has been
extremely influential in science and mathematics education, but much less so in computer sci-
ence education (CSE). This paper surveys constructivism in the context of CSE, and shows
how the theory can supply a theoretical basis for debating issues and evaluating proposals. An
analysis of constructivism in computer science education leads to two claims: (1) students do
not have an effective model of a computer, and (2) computers form an accessible ontological
reality. The conclusions from these claims are that: (1) models must be explicitly taught, (2)
models must be taught before abstractions, and (3) the seductive reality of the computer must
not be allowed to supplant construction of models.

Introduction

The dominant theory of learning today is called constructivism. This theory claims that knowledge is ac-
tively constructed by the student, not passively absorbed from textbooks and lectures. Since the construction
builds recursively on knowledge that the student already has, each student will construct an idiosyncratic
version of knowledge. To the extent that such knowledge is not identical with ‘standard’ scientific knowl-
edge, the student is said to have misconceptions. Teaching techniques derived from the theory of construc-
tivism are supposed to be more successful than traditional techniques, because they explicitly address the
inevitable process of knowledge construction.

Constructivism has been intensively studied by researchers of science education (Glynn, Yeany, & Britton,
1991) and mathematics education (Davis, Maher, & Noddings, 1990), to the extent that “radical construc-
tivism represents the state of the art in epistemological theories for mathematics and science education”
(Ernest, 1995, p. 475). However, there has been much less work on constructivism in computer science
education.

This article is logically divided into two parts. The first part—after a motivating example—is a survey of
the theory of constructivism and its application in science education. The second part of the paper contains
my analysis of the theory in the context of computer science and my attempts to apply the theory to issues
that are of current interest in CSE.

The discussion will be concentrated within the framework of novice programmers, but constructivist prin-
ciples are applicable at all levels of computer science education. Given the rapid rate of change of software
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tools and applications, most software engineers in industry and business are continually engaged in ed-
ucation: not only in formal training sessions, but also—perhaps more importantly—in the development
of manuals, interfaces and help files. They will find the theory and its applications to be both thought-
provoking and relevant to their day-to-day work.

Computer science education (though not perhaps theoretical computer science) probably has more in com-
mon with engineering education than with science education. Readers with a background in engineering
are invited to speculate about the applicability of my analyses to their fields.

Previous work

There is a large literature on the psychology of programming (Hoc, Green, Samurçay, & Gilmore, 1990;
Soloway & Spohrer, 1989; Mayer, 1988); in particular, researchers interested in teaching programming to
children or to non-majors are often cognitive psychologists deeply immersed in Piagetian principles. Oc-
casionally, these researchers explicitly acknowledge their commitment to constructivist principles (diSessa,
Abelson, & Ploger, 1991, p. 12).

The literature on constructivism in computer science education is in no way comparable with the vast liter-
ature in mathematics and physics education. Even today, a search of ‘constructivism’ in the ACM Digital
Library returns only a handful of papers. While many computer science educators have been influenced
by constructivism, only recently has this been explicitly discussed in published work (Boyle, 1996; Brandt,
1997; Gray, Boyle, & Smith, 1998; Hadjerrouit, 1998).

Motivation

WYSIWYG (What You See Is What You Get) word processors are considered to be the epitome of user-
friendliness, because working with them is supposed to be exactly analogous to writing with pen or pencil
on a sheet of paper—a routine familiar to everyone who has graduated from elementary school. But con-
sider the following scenario. You type in the title of your term paper, select the text and request boldface
font. Unfortunately, as you begin to type the text of the paper, it is also displayed in boldface font! Your
pre-existing knowledge of a WYSIWYG word processor is almost certainly the metaphor of ordinary writ-
ing which consists of placing blobs of ink sequentially, but arbitrarily, on a sheet of paper (Figure 1).
This metaphor cannot furnish an explanation for the phenomenon you have encountered, so you become
frustrated, anxious and lose self-confidence.

(Place Figure 1 here.)

Of course, the explanation is trivial: the word processor is not storing blobs of ink, but symbols including
implicit symbols for font changes and for indicating the end of a line (Figure 2). (Here we are arbitrarily
using HTML notation: <b>. . . </b> to delimit boldface font and <br> to indicate a line break.) If your
selection of the text fragment to change to boldface included an invisible(!) line break character, text typed
before the line break will be mysteriously displayed in boldface.

(Place Figure 2 here.)

The correct explanation of WYSIWYG should now be clear. What you get is: (1) a data structure for
storing text and formatting specifications, and (2) a set of operations on that data structure. What you see
is: (1) a rendering of the data structure on the screen, and (2) icons and menus to invoke the operations.
To learn how to use the word processor, you must: (1) create a mental model of the data structure and the
effect of each operation, and (2) attribute to each icon and menu item a meaning as an operation.

Constructivism claims each individual necessarily creates cognitive structures (models) when learning to
use the word processor. Furthermore, it claims that each individual will perform the construction differ-
ently, depending on his or her pre-existing knowledge, learning style and personality traits. Hopefully, the
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construction is viable and the user can successfully use the word processor. Unfortunately, but perhaps
inevitably, many users construct non-viable models.

Teaching how to do a task can be successful initially, but eventually this knowledge will not be sufficient. As
the example tries to show, a student who only knows the procedure for changing from ordinary to boldface
font will be helpless when faced with this novel situation. The problem is caused not by stupidity on the
part of the novice, nor by incorrectly following the instructions, but by a misconception that is attributable
to the lack of a viable model that can explain the behavior of the word processor. The teacher must guide
the student in the construction of a viable model so that new situations can be interpreted in terms of the
model and correct responses formulated.

The word-processor example illustrates two aspects of learning that are characteristic of computer science.
First, since computer science deals with artifacts—programming languages and software, the creator of the
artifact employed a very detailed model and the learner must construct a similar, though not necessarily
identical, model. Second, knowledge is not open to social negotiation. Given that the word processor is an
extant artifact, you cannot argue that its method of using fonts is incorrect, discriminatory, demeaning, or
whatever. You may be able to choose another software package, or to request modifications in an existing
one, but meanwhile you must learn the existing reality. These two points will be extensively discussed in
the rest of the paper.

Epistemology and Constructivism

Educational paradigms

An educational paradigm is composed of four components (Ernest, 1995):

• An ontology which is a theory of existence.

• An epistemology which is a theory of knowledge, both of knowledge specific to an individual and of
shared human knowledge.

• A methodology for acquiring and validating knowledge.

• A pedagogy which is a theory of teaching.

(See Scheffler (1965) for an introduction to epistemology in the framework of education. Scheffler gives a
slightly different decomposition; in particular, he includes evaluation: deciding what knowledge is reliable
or important.)

We can use this framework to succinctly describe the classical educational paradigm:

• There is an ontological reality. Even though scientists accept the theories of relativity and quantum
mechanics, the Newtonian model of absolute space and time is the model we generally use for reality.
Furthermore, we function as Platonist mathematicians who hold that mathematics has an existence
independent of ourselves in which 2 + 2 = 4 is absolutely true.

• Epistemology is foundational. The truth is out there. We come to believe foundations—necessary
truths such as 2 + 2 = 4 and empirical sensory data—and then use valid forms of logical deduction
to expand the extent of true knowledge.

• The mind is a clean slate that can be filled with knowledge. Once you know enough facts and rules
of inference, you can create new knowledge by logical deduction. Carroll (1990) cites the legend of
the Nurnberg Funnel which can be used to ‘pour’ knowledge directly into the learner’s head.
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• Listening to lectures and reading books are the primary means of knowledge transmission. Repetition
(drill and practice) will ensure that the knowledge is retained.

The constructivist paradigm is dramatically different:

• Ontological reality is either rejected or at best considered irrelevant. Since we can never truly ‘know’
anything, ontology cannot influence our educational paradigm.

• The epistemology of constructivism is nonfoundationalist and fallible. Absolute truth is unattainable,
so there is no foundation of truth on which to build. Even 2 + 2 = 4 is not a necessary truth (Barnes,
Bloor, & Henry, 1996, Chapter 7)! Knowledge is constructed by each individual and thus necessarily
fallible.

• Knowledge is acquired recursively: sensory data is combined with existing knowledge to create new
cognitive structures, which are in turn the basis for further construction. Knowledge is also cre-
ated cognitively by reflecting on existing knowledge. These concepts come from the seminal work
of Jean Piaget on the acquisition of knowledge by children; Piaget’s work was instrumental in the
development of constructivist theories.

• Passive learning will likely fail, because each student brings a different cognitive framework to the
classroom, and each will construct new knowledge in a different manner. Learning must be active:
the student must construct knowledge assisted by guidance from the teacher and feedback from other
students.

Constructivists believe that effective learning demands not just discovery of facts, but the construction of
viable mental models, and that teachers must actively guide the student in this effort. The task of the teacher
in the constructivist paradigm is significantly more difficult than in the classical one, because guidance must
be based on the understanding of each student’s currently existing cognitive structures.

Note that constructivism does not reject classical means of instruction such as lecturing and reading books.
As Mason notes, tongue-in-cheek: “Many educators espousing constructivism have been known to attend
lectures on constructivism, and even to have enjoyed them!” (Mason, 1994, p. 197). The problem is not the
lecture itself, but the assumption that ‘students know what the lecturer told them’. And Mason continues
with the suggestion that:

. . . when preparing a lecture, it is the fact of the imminent audience which enables the lecturer
to contact the content in fresh ways, in a state conductive to creativity and connection-finding.
(Mason, 1994, p. 198)

The concept that the student is trying to construct a model from what are, after all, only words is an ap-
pealing theoretical framework for an educator to use in assessing the success or failure of a lecture or other
teaching activity.

Conversely, constructivism in not co-extensive with ‘modern’ teaching methods such as group projects,
discovery learning and active tasks. These methods are favored by constructivists only if they are designed
to enable the students’ to build a viable mental model based on pre-existing knowledge. A hands-on activity
is useless if “their hands are on, but their heads are out” (Resnick, 1997, p.28).

Constructivism does have a lot in common with discovery or inquiry learning, where students are expected
to discover knowledge by themselves when placed in the appropriate situation. The benefits of discovery
are claimed to be:
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. . . (1) the increase in intellectual potency, (2) the shift from extrinsic to intrinsic rewards, (3)
the learning of the heuristics of discovering, and (4) the aid to conserving memory. (Bruner,
1962, p. 83)

Note that Bruner (1962, p. 85) seems to agree with the constructivist viewpoint that unfettered discovery
is not helpful; he distinguishes between episodic empiricism, where the student accumulates unconnected
facts, and cumulative constructionism, where the discovery is organized.

Constructivists differ among themselves as to the relative importance ascribed to the individual learner and
to the group in constructing knowledge; these variants are known as radical and social constructivism,
respectively. A discussion of the variants of constructivism is beyond the scope of this article; see Ernest
(1995), Phillips (1995).

Constructivism in science education

Studies have shown that relatively few students reach an acceptable level of achievement in high-school
science and mathematics (Duit, 1991). Physics teachers seem to have the worst time, as students retain
a naive theory of physics despite intensive instruction in Newtonian mechanics (McCloskey, 1983). For
constructivists this is not surprising: everyone who has ever thrown a ball—that is, everyone—knows that
if you don’t keep applying force, an object in motion will eventually come to rest. Apparently, these ideas
are so entrenched that mere lectures and even experiments have a difficult time evicting them. At most, a
certain facility in manipulating formulas is achieved, but this fails as soon as the student attempts to solve a
problem that requires deep understanding.

The discrepancy between performance and understanding has also been noted in mathematics education:

The pupil’s fundamental problems with such ideas as negative or complex numbers tend to be
overlooked by the teacher mainly because the latter’s own implicit beliefs make him or her
oblivious to the possibility of somebody having a different ontological stance. . . . Another cir-
cumstance that helps in concealing ontological difficulties is the fact that a student may become
quite skilful in manipulating concepts even without reifying them. (Sfard, 1994, p. 268)

Physics educators are very receptive to constructivist principles. After all, physicists have undergone two
massive restructurings of their world within a short period of history: from Aristotelian physics to New-
tonian physics and then to Einsteinian physics. One cannot fault them for their reluctance to believe that
E = mc2 is an absolute truth. This openness is demonstrated by their willingness to attribute to the student
alternative frameworks rather than misconceptions.

In fact, von Glasersfeld, a pioneer of constructivism, would never say that something is wrong, because
he does not believe in the possibility of establishing universal truths. Instead, he says that concepts are
viable “if they prove adequate in the contexts in which they were created” (Glasersfeld, 1995, p. 7). This
is analogous to the use of the word in biology to denote an organism adapted to its environment. The
box metaphor for variables, and the communications model of reference parameters (discussed below) are
simply non-viable, because they cause the student to fail on programming tasks.

According to constructivism, a teacher cannot ignore the student’s existing knowledge; instead, he or she
must question the student in order to understand exactly what theory the student is currently using, and
only then attempt to guide the student to the ‘correct’ theory. It is perhaps axiomatic for a constructivist that
students have consistent theories—they just happen to be at variance with the (currently accepted) scientific
theory.

In most fields of science education including computer science, there is a large body of research that catalogs
misconceptions. A constructivist would view a misconception not as a mistake, but as a logical construction
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based on a consistent, though non-standard theory, held by the student. Even Matthews—who is critical of
constructivism—is careful to point out that:

It is with respect to [contemporary physics] that [students] have misconceptions, it is not with
respect to the behavior of the natural world. (Matthews, 1994, p. 133)

Merely listing misconceptions is fruitless; a misconception must be accompanied by a description of the
underlying model that caused it, and by a suggestion how to base the construction of a viable model on the
existing one. Smith III, diSessa, and Roschelle (1993) go so far as to claim that misconceptions form the
prior knowledge that is essential to the construction of new knowledge!

It is important not to confuse the use of computers in science education with the study of computer science.
Computers are often seen as a tool to increase the constructive content of science education. For example,
Hatfield (1991) considers programming, or more generally algorithmics, as constructive. However, his
paper is essentially concerned with the contribution of algorithmics to mathematical education, rather than
to the constructivist aspects of computer science and programming. Similarly:

The role of the computer activities is . . . to provide an experiential basis for all other learning
modes. . . . the main point is spending the time and effort on the problem, not solving it. (Leron
& Dubinsky, 1995, pp. 231, 236)

In CSE, the computer is not just providing an experiential basis, nor is it creating a microworld (Harel &
Papert, 1991) in order to facilitate construction of knowledge in another domain. Instead, the students are
learning about computing itself—systems, algorithms, languages—and lessons from the use of computers
in other fields must be applied carefully.

Criticism of constructivism

Before continuing, we must stress that that there is strong opposition to constructivism. See the articles
by Matthews, Nola, Phillips and Ogborn in the Special Issue on Philosophy and Constructivism in Science
Education (January 1997) of the journal Science & Education. The articles are also available in Matthews
(1998).

One critic writes vehemently:

If radical constructivism is post-epistemological then it is also pre-Copernican and adopts views
of science similar to those of the Inquisition that interviewed Galileo. (Nola, 1997, p. 209)

The criticism is not so much of the constructivist theory of learning, but rather of extreme conclusions
drawn from constructivist epistemology:

The one-step argument from the psychological premise (1) “the mind is active in knowledge
acquisition,” to the epistemological conclusion (2) “we cannot know reality,” is endemic in
constructivist writing. (Matthews, 1994, p. 151)

Carried to the extreme, radical constructivism leads to solipsism, the philosophical claim that the world is
one’s own mental creation. In turn, this can lead to a rejection of ethics: if the world is my own creation,
why should I care what happens to others? Boyle (1996, Section 6.4) takes radical constructivists to task
for putting too much emphasis on an individual’s cognition at the expense of the biological (Piaget) and
social (Vygotsky) foundations upon which cognition must be based.

Carried to the extreme, social constructivism leads to a view of science as a merely political enterprise de-
veloped by entrenched elitist groups whose sole purpose is to ensure their own survival. From the fallibility
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of scientific knowledge, one slips into relativism of truth, and from the sociology of scientific practice,
into demands for empowerment detached from any attempt at objective evaluation of scientific knowledge.
The extreme position is stated in the Edinburgh ‘strong programme’ on the sociology of knowledge (Bloor,
1991; Barnes et al., 1996); for criticism of this position see the articles in Matthews (1998).

The essential question is whether being a constructivist requires an epistemological committment to em-
piricism and idealism (or social idealism), as opposed to rationalism and realism that seem to come more
naturally to scientists. This delicate question can perhaps be avoided by taking the position of ‘pedagogical
constructivists’:

. . . who concentrate solely on pedagogy, and improved classroom practices, . . . . For [whom],
the details of epistemological psychology are unimportant, and not worth disputing about.
(Matthews, 1997, p. 8)

Empirical Results in CSE

There is no question that many students find the study of computer science extremely difficult, especially
at elementary levels. Before proceeding with a theoretical analysis, it is worthwhile to survey some results
that demonstrate the depth of the problem:

• Sleeman, Putnam, Baxter, and Kuspa (1989), Samurçay (1989) and Paz (1996) found that the concept
of variable is extremely difficult for students. For example, students believe that a variable could
simultaneously contain two values, and that after executing A := B, the variable B no longer contains
a value. The students have constructed a consistent model using the analogy of a box; the model just
happens to be non-viable for successful programming.

• Haberman and Ben-David Kolikant (unpublished research) administered a test designed to check the
basic concepts of assignment, read and write statements in Pascal. Given the statements:

read(A, B);

read(B);

write(A, B, B);

many students are not at all sure what happens when you read twice to the same variable or write
twice from the variable. They find it difficult to construct a model that identifies ‘who’ is doing the
reading and the writing. Similarly, Samurçay (1989) claims that students’ models of read(A) may
not include the assignment to the variable A.

• Madison (1995) used extensive interviews to elicit the internal model of parameters (especially ref-
erence parameters) held by students in an introductory course. The students were taught a commu-
nications model for parameters, rather than a model of the implementation (copy and reference).
The interviews demonstrated that students had constructed consistent, but non-viable, models of the
implementation of parameters.

• Similarly, Fleury (1991) discovered ‘student-constructed rules’ for Pascal parameters that were oc-
casionally successful, but non-viable in the general case.

• Deep misconceptions are not limited to elementary programming. Holland, Griffiths, and Wood-
man (1997) show the extent of the misconceptions held by students studying object-oriented pro-
gramming. They found inappropriate conflation of the concept of an object with other concepts like
variable, class and textual representation.
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• The difficulties that students have in elementary computer science studies are often attributed to the
need to spend too much time on the syntax of low-level procedural languages like Pascal and C. But
similar phenomena are encountered even when teaching Prolog, a language whose syntax is about as
simple as can be imagined. Taylor (1990) studied novice Prolog programmers and found that students
constructed models that were not viable:

Prolog’s behavioral component is complex, and because its syntax is noncommittal, learn-
ers are tempted to hallucinate onto it whatever they think appropriate, rather than referring
to an interpretation based upon underlying domain knowledge. (Taylor, 1990, p. 308)

• Algorithm and software visualization is an extremely active field of CSE research. Yet Mulholland
(1997) found that software visualization in itself does not necessarily help the student unless the
visualization is based on a careful analysis of the pedagogic task.

Constructivism in the Context of CSE

To what extent is constructivism applicable to CSE? According to constructivism, students construct knowl-
edge by combining the experiential world with existing cognitive structures. I claim that the application of
constructivism to CSE must take into account two characteristics that do not appear in natural sciences:

• A (beginning) computer science student has no effective model of a computer.

• The computer forms an accessible ontological reality.

By effective model, I mean a cognitive structure that the student can use to make viable constructions of
knowledge based upon sensory experiences such as reading, listening to lectures and working with a com-
puter. By accessible ontological reality, I mean that a ‘correct’ answer is easily accessible, and moreover,
successful performance requires that a normative model of this reality must be constructed. The rest of this
section expands on these claims.

The important word is effective. The naive theory of physics held by students is clearly effective, as anyone
who has seen professional ball players can testify. They have intuitive models that enable them to implicitly
calculate the forces required to achieve superb accuracy when throwing or kicking a ball. Note that diSessa
(1988) does not believe that students’ intuitive concepts form a well-developed theory. Rather, he claims
that they have a large number of fragments called p-prims, short for phenomenological primitives. This
does not materially change the argument, as it is doubtful that intuitive knowledge about computers reaches
even the level of diSessa’s p-prims.

The empirical results cited earlier (especially the work by Taylor (1990)) show just as clearly that intuitive
models of computers are doomed to be non-viable. At most, the model is limited to the grossly anthropo-
morphic giant brain, hardly a useful metaphor when studying computer science. Pea (1986) gives the name
‘superbug’ to the idea that a ‘hidden mind’ within the programming language has intelligence.

At the novice level, the claim is supported by many studies:

Even if no effort is made to present a view of what is going on ‘inside’ the learners will form
their own. (du Boulay, 1989, p. 285)

. . . [we] attribute students’ fragile knowledge of programming in considerable part to a lack of
a mental model of the computer. . . . (Perkins, Schwartz, & Simmons, 1988, p. 162)

. . . even after a full semester of Pascal, students’ knowledge of the conceptual machine under-
lying Pascal can be very fuzzy. (Sleeman, Putnam, Baxter, & Kuspa, 1988, p. 251)

8



www.manaraa.com

The lack of an effective, even if flawed, model of a computer can be a serious obstacle to teaching com-
puter science if we accept the claim by Smith III et al. (1993) that prior knowledge, even in the form of
misconceptions, is essential to the construction of new knowledge.

Turning now to the question of ontological reality, the computer science student is faced with immediate
and brutal feedback on conclusions drawn from his or her mental model. More graphically, alternative
frameworks cause bugs. Computer science is unlike school physics: the consequences of misconceptions
are exposed immediately, not when you get your homework back a week later. Similarly, from the so-
cial viewpoint, there is not much point negotiating models of the syntax or semantics of a programming
language.

This claim is based on the fact that almost all introductory computer science instruction includes pro-
gramming. If, as Dijkstra (1989) suggested, we taught programs as mathematical objects that need not be
executed on a computer, the normal constructivist principles would apply. We could talk about the viability
of denotational semantics, or the social processes responsible for the belief in the Church-Turing Thesis.
If the latter were ever superseded, we would experience a shock no less intense than that experienced by
physicists in the early twentieth-century. Clearly, since computer science is unlikely to become a subject
that is primarily theoretical, we must generate the motivation to examine our teaching practices without the
benefit of an epistemological shock.

The claim cuts at the heart of constructivist epistemology, which is nonfoundationalist and fallible. But the
pedagogy of constructivism is relatively independent of its epistemology. A physicist has no way of deter-
mining if E = mc2 is true, but few of us can resist the temptation to use a computer if it helps us construct
knowledge about a language or system. In fact, one of the ultimate tests of your prowess as a computer
programmer or software engineer comes when you have to deal with a bug in the underlying hardware,
operating system or language compiler. Since you have come to look upon them as ontological reality—as
arbiters of truth so to speak—it is extremely difficult to diagnose a problem in the implementation of your
mental model, as opposed to a problem in your personal task such as writing a program.

Application of Constructivism in CSE

Many phenomena of CSE can be explained by constructivism:

• The construction of even elementary computer science concepts is haphazard, leading to frustration
and to the perception that computer science is hard. This is due to the fact that—in the absence of a
viable pre-existing model—models must be self-constructed from the ground up.

• Autodidactic programming experience is not necessarily correlated with success in academic com-
puter science studies. These students, like most physics students, come with firmly held mental
models that are not viable for academic studies.

• Graphical user interfaces (GUI) are often touted as ‘intuitive’ and ‘user-friendly’, yet many people
earn a comfortable living giving courses to anxiety-ridden users. Icons, scroll bars and menus are
merely representations, and seeing a representation alone contributes very little to the construction of
a model.

• The reality feedback obtained by working on a computer can be discouraging to students who prefer
a more reflective or social style of learning.

In the rest of the paper, I will apply constructivist principles to specific issues in CSE. To avoid misun-
derstanding, it is important to clarify what is being claimed here. I am not (necessarily) saying that one

9



www.manaraa.com

approach is superior to another; rather, I am saying that certain conclusions seem to follow directly from
constructivist principles, so that if you accept constructivism—which you are not required to do of course—
then you must be willing to analyze your teaching methods in light of these conclusions.

GUI and WYSIWYG Angst

Turkle and Papert (1990) wax poetic on the virtues of icons. Yet an icon is just a representation; it is useful
only to the extent that the user can construct a mental model of object being represented. The icon must
undergo semiosis: “the process whereby something comes to stand for something else, and thus acquires the
status of a sign” (Husén & Postlethwaite, 1994, p. 5411). Today’s software packages, both those intended
for the general public such as word processors and professional software such as integrated development
environments, display dozens of icons. From a semiotic point of view, it may be true that that an icon is
better than text, but from a constructivist point of view, what is important is the construction of the model
and not the sign that denotes it.

Icons are intuitive to the extent that the analogy between the object shown and the object represented is
perfect. But as Glynn (1991) shows, analogies are rarely, if ever, perfect, so one must not lose patience
with a novice who has yet to construct a viable model of the underlying machine. For example, consider
an icon for the paste operation. The icon is two steps removed from the operation. First, the icon must
be deciphered as representing the word paste. (This first step can be skipped if paste is selected from a
menu.) Second, the word whose original meaning is ‘form a permanent chemical bond between one item
and another’ must be related to the operation ‘insert a copy of the material held in an internal buffer into the
current working document at the place pointed to by the cursor’. To understand this operation, you must
have a mental model that enables you to understand the four concepts in this sentence. Even if the word
‘paste’ is avoided, it is hard to see how so many concepts can be contained within an icon.

WYSIWYG (What You See Is What You Get) is another concept that could benefit from constructivist
analysis as we showed above. The relevance for CSE is this: courses, help files and tutorials must explicitly
address the construction of a model, and not limit themselves to behaviorist practices of the form ‘to do
X, following these steps’. It is a reasonable conjecture that document preparation systems with transparent
models like LATEX and HTML should engender less anxiety among their users than WYSIWYG systems
on complex tasks. If the underlying model is not accessible, there is a genuine trepidation associated with
trying out new or advanced features, for fear that the document will be irrevocably trashed; with a trans-
parent model you can easily insert and then comment-out or remove the explicit commands. Many users of
WYSIWYG systems overcome the anxiety and eventually construct viable models, but the anxiety returns
as new features are tried or familiar ones used in new contexts. Of course the claims in this paragraph are
anecdotal and need empirical verification.

Explicitly Teach the Model

If the student does not bring a preconceived model to class, we must ensure that a viable hierarchy of
models is constructed and then refined as learning progresses. This means that the model of a computer—
CPU, memory, I/O peripherals—must be explicitly taught and discussed, not left to haphazard construction
and not glossed over with facile analogies. Furthermore, the choice of language is not arbitrary (as is often
claimed) because the “simplicity and visibility of the notional machine can be spoiled by poor language
design or implementation” (du Boulay, O’Shea, & Monk, 1989, p. 436).

Teaching the model can be done using diagrams Mayer (1975) or epistemic games—formalized procedures
for constructing knowledge—such as a model computer (Sherry, 1995) or a notional machine (du Boulay,
1989). Kieras and Bovair (1984) showed that a block diagram of an instrument facilitates the learning
of an operational procedure, and Mulholland showed that software visualization (SV) of Prolog programs
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is most successful if “there is a clear, simple mapping between the SV and the underlying source code”
(Mulholland, 1997). Based on observations of expert programmers and electronics engineers, Petre (1991)
believes that declarative reasoning does not really occur; instead, the experts reason operationally in terms
of an underlying machine.

An important question is: how detailed should a model be? Does an introductory computer science student
have to construct a model in terms of the electronic properties of semiconductors?! The extent and fidelity
of the model that must be taught to the students can only be discovered from the experience of teachers
of the subject. Sherry’s model seems to be too detailed; a better approach is demonstrated by Naps and
Stenglein (1996) who created a visualization of a specific concept—parameter passing. Much can be done
even with non-computerized epistemic games. For example, take three cheap calculators and attach them
to a board (Figure 3), covering up all the non-numeric keys except for ’=’. Each calculator represents
one variable and it is possible to practice assignment statements without ever touching a programmable
computer.

(Place Figure 3 here.)

Don’t Start with Abstractions

My conclusion that a model of the computer be explicitly taught has implications for the teaching of object-
oriented programming (OOP) in introductory courses. The abstraction inherent in OOP is essential as a
way of forgetting detail, and software development would be impossible without abstraction, but it seems
to me that there must be an object-oriented paradox: how is it possible to forget detail that you never knew
or even imagined? If students find it difficult to construct a viable model of variables and parameters, why
should we believe that they can construct a viable model of an object such as a window object? Advocates
of an objects-first approach seem to be rejecting Piaget’s view that abstraction (or accommodation) follows
assimilation.

Professional software engineers who use abstractions generally have a fairly good idea of the underlying
model. For example, few software engineers have actually written programs for manipulating windows on a
screen. But even a general understanding of how images are represented in the computer by bitmaps should
be sufficient to enable the engineer to construct a viable model.

I appreciate the attractiveness of an objects-first approach; the gap between the standard libraries (especially
the GUI libraries) of a modern programming environment and the model of a computer is so great that
motivating beginners has become a serious problem. Furthermore, OOP can be used to teach good software
development practice from the beginning because “OOP allows—even encourages—one to address the “big
picture” by emphasizing a strategic approach to programming” (Decker & Hirshfeld, 1993, p.271).

Turkle and Papert go further and claim that OOP is:

. . . not only more congenial to those who favor concrete approaches, but it also puts an in-
tellectual value on a way of thinking that is resonant with their own. (Turkle & Papert, 1990,
p. 155)

This claim is strange, because the point of studying OOP is to learn to create abstractions, not just to use
existing concrete objects. The concreteness of reading and using objects is at most a stepping-stone to
modifying, extending and defining them, as advocates of OOP are careful to point out (Decker & Hirshfeld,
1993).

Given these advantages of the objects-first approach, it cannot be dismissed out of hand; on the contrary, the
trade-offs probably favor this approach. But if the constructivist viewpoint is valid, teachers of introductory
courses that use OOP should be very, very careful not to assume that the students will construct the model
that the instructor has, nor even to assume that they will construct a viable model at all.
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This viewpoint is supported by the literature on teaching OOP:

• While Adams (1996) opposes deferring the teaching of OOP until late in the curriculum by which
time it is difficult to cure students of the low-level paradigms they have developed, neither does
he believe that OOP should be taught first when the students are not mature enough to master the
concepts involved:

CS1 novices do not have the cognitive framework to grasp the concepts underlying object-
oriented design, because they have no experience dealing with types and functions, much
less classes, function members or inheritance. (Adams, 1996, p.79)

He advocates a middle road where objects are introduced early but only after sufficient procedural
programming has been learned to provide an underlying mental model.

• Wolz and Conjura (1994) propose a three-tiered model for teaching introductory computer science
which includes mathematical theory (unusual but refreshing!), implementation and mechanical trivia.
They report that teaching OOP using C++ in CS2 is successful because students are able to build on
previous knowledge learned from CS1: expressing algorithms procedurally in Scheme. On the other
hand, they claim that:

There is no reason that students in a first course can’t learn to use [data types such as
queues, stacks, lists, trees and graphs] before learning how they are implemented. (Wolz
& Conjura, 1994, p.224)

From a constructivist point of view, one must evaluate the mental models these students construct; if
they are non-viable, they can impede further study.

• Holland et al. (1997) summarize students’ misconceptions in an introductory course that uses OOP.
Many of these misconceptions are due to conflation of concepts (object/variable, object/class) that
can be attributed to the lack of an effective mental model. Based on experience in other disciplines
of science education, cataloging and analyzing misconceptions will not be sufficient to improve stu-
dents’ understanding. Instead, research must be done to identify the mental models that cause these
specific misconceptions, and guidelines must be developed so that teachers can diagnose and correct
the problems.

For an objects-first approach to work, teachers will have to develop ways of explaining the underlying
models without destroying the abstractions. My current belief is that introductory CSE should be based
on the functional or logic programming paradigm, not only because these languages minimize mechanical
trivia, but also (and primarily) because the underlying models can be explained in relatively high-level,
hardware-free terms.

Bricolage

Bricolage is a term coined by the anthropologist Claude Lévi-Strauss, who used it in a derogatory sense
for the ‘science of the concrete’ in primitive societies, as opposed to abstract European science. Turkle and
Papert (1990) transferred the concept to the context of learning to program, and vehemently defend it as a
learning style as valid as the normative ‘planning’ style that we attempt to teach. This is consistent with a
constructivist view of education: different students will approach the construction of knowledge in different
ways, and the educational environment must be supportive of these differences.

The manifestation of bricolage in computer science is endless debugging: try it and see what happens. While
we all practice a certain amount of bricolage and while concrete thinking can be especially helpful—if not
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essential—for students in introductory courses, bricolage is not an effective methodology for professional
programming, nor an effective epistemology for dealing with the massive amount of detailed knowledge
must be constructed and organized in levels of abstraction (cf. object-oriented programming). The norma-
tive planning style that we call software engineering must eventually be learned and practiced.

This belief is likely to be shared by anyone who has studied or worked on non-deterministic systems involv-
ing concurrency, real-time or communications, subjects that are simply not amenable to bricolage and can
be mastered only through abstract techniques. Students who excel at bricolage often cannot make the tran-
sition to master the thought patterns and methods required by these systems. This claim has implications
for counselling students. If software development is ultimately about abstraction, a students incapable of
or uncomfortable with abstract thought should be discouraged from studying for the profession of software
engineer.

Gender

Turkle and Papert (1990) published their article arguing for tolerance of concrete thinking in a journal
subtitled Women in Culture and Society, and they chose two women to exemplify college students who are
concrete thinkers. Since the concrete way of thinking advocated by Turkle and Papert can only go so far in
computer science, their coupling of a learning style with a gender stereotype would lead to the unacceptable
conclusion that women are not suited for careers as computer scientists.

On the other hand, constructivism—especially social constructivism—has much to say about the task of
the teacher and the role of peers in education, and the theory can contribute to the analysis of the well-
documented social difficulties faced by women in the computer science classroom and laboratory.

Minimalism

Minimalism (Carroll, 1990, 1998) is an approach to instruction that arose in the design of manuals for
software documentation. It is apparently little known outside of this community. (For a good introduction
see Van der Meij and Carroll (1998).) The minimalist approach to training and documentation can be
summarized as follows:

. . . (1) allowing learners to start immediately on meaningful realistic tasks, (2) reducing the
amount of reading and other passive activity in training, and (3) helping to make errors and
error recovery less traumatic and more pedagogically productive. (Carroll, 1990, p. 7)

Minimalism has much in common with constructivism as explicitly noted by Van der Meij (1992, p. 7) and
Carroll and Van der Meij (1998, p. 84):

• A preference for active learning to enable the student to construct mental models.

• Recognition of the importance of pre-existing knowledge.

• The employment of the inevitable errors and misconceptions as a pedagogical device rather than as a
symptom of failure.

Minimalism seems to part company with constructivism in its emphasis—even insistence—on eliminating
conceptual material, or at least on deferring it as long as possible:

It is quite common for training manuals to present a “welcome to the system” preface, a con-
ceptual model of how the system works, . . . . And none of this, even in the end, does much to
facilitate the user’s desire to get started on meaningful activity. Rather, it obstructs this goal.
(Carroll, 1990, p. 80)
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The success of minimalism has been empirically demonstrated in straightforward training tasks like learning
to use a word processor. But once the user needs to go beyond elementary tasks, the absence of a viable
mental model means that the user’s attempts to master advanced material will be frustrating and lead to a
reluctance to learn new concepts.

To test this conjecture, I performed an experiment which required the subjects to modify documents in
Microsoft Word (Ben-Ari, 1999). The tasks were chosen to be easy if you understand the underlying con-
cepts, but quite difficult if you do not. The (sophisticated) subjects almost invariably used bricolage. They
restricted themselves to elementary techniques learned in a minimalist setting—behaviorist explanations
from colleagues—and made no attempt to investigate the concepts or even to use the Help facility.

Some authors now claim that the dismissal of conceptual material by naive minimalism was mistaken and
some way must be found to strike a balance. See the articles by Rosenbaum, Hackos, Redish, Farkas and
Draper in the retrospective volume by Carroll (1998). For example:

. . . a manual must: Help users grasp the big picture of the product, that is, help users develop a
mental model that helps them predict what to do. (Redish, 1998, p. 240).

Given the empirically proven success of minimalism in the narrow field of technical documentation, it
would be interesting to explore a closer integration of minimalist writing techniques with constructivist
teaching techniques.

Don’t run to the computer

Constructivism suggests that programming exercises should be delayed until class discussion has enabled
the construction of a good model of the computer. Too often students become infatuated with the absolute
ontology supplied by the computer. Premature attempts to write programs lead to bricolage and delay
the development of viable models. While formal methods in computer science education are extremely
important, you need not go to the extreme that Dijkstra advocates and entirely give up compilation and
execution of programs. There is nothing wrong with experimentation and bricolage-style debugging, as
long as it supplements, rather than supplants, planning and formal methods.

Unfortunately, computer science education is heavily weighted on the side of bricolage. A high-school
course we are developing comes in for scathing criticism from many students (and some teachers!) because
we insist on ‘wasting time’ on algorithm development and analysis, instead of just getting on with writing
and debugging programs.

Laboratory organization

One of the debates in CSE concerns the choice between closed labs—where students work on assignments
at an appointed time in a supervised setting, and open labs—where students work on assignments whenever
convenient. From a constructivist viewpoint, especially from a social constructivist one, closed labs should
be preferable, not only because they soften the brutality of the interaction with the computer, but also
because they facilitate the social interaction that is apparently necessary for successful construction. In fact,
Thweatt (1994) found empirical evidence for the superiority of closed labs over open labs.

The type of problems assigned is also important; as opposed to minimalism’s emphasis on task performance,
problems should encourage cognitive operations such as reflection and exploration:

Another common failing in lab design is to make every task so constrained and explicit that stu-
dents never need to think about what techniques to use. . . . The production of an ill-structured
problem is likely to add an element of reality to the lab, and allows the students to have
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their own Eureka!s about the underlying nature of the exercise. (Fekete & Greening, 1996,
pp. 295, 298)

Assessment

Performance on a test is a poor guide to the students’ construction of the rich conceptual models of computer
science. A student’s failure to construct a viable model is a failure of the educational process, even if the
failure is not immediately apparent. Furthermore, in the case of group work, performance-based assessment
can mask the misconceptions of individual students (Sleeman et al., 1988). Ideally, constructivist-inspired
assessment would be based on an instructor’s observation and questioning of students engaged in an un-
constrained activity such as a lab project. Unfortunately, this is almost always impractical, and instructors
must attempt to designed written questions that elicit information about the student’s mental model rather
than about the contents of his or her factual memory.

Implications for Research

In their book, Maykut and Morehouse (1994) claim that practitioners of qualitative research must under-
stand its philosophical underpinnings, which are essentially constructivist in nature. The claim can be
turned around: a researcher working from a constructivist viewpoint should use qualitative methods.

We are now starting to see more empirical research in CSE done using qualitative methods (Madison, 1995;
Mulholland, 1997). These techniques which elicit the internal structures of the student are far more helpful
than research that measures performance alone and then draws conclusions on the success of a technique.

As computer literacy becomes common, if not universal, students will begin their academic studies with an
effective model of a computer. Research must be done to determine if these models are stepping-stones to
the construction of effective models, or obstacles like naive physics.

A Guide for Educators

To summarize the paper, here is a guide for educators on the practical application of constructivism.

• Regardless of your teaching technique (lectures, labs, assignments), you must articulate to yourself
the cognitive change that you wish to bring about in the students and structure the activity to achieve
this aim. Merely transferring knowledge is not a meaningful aim.

• You must dig underneath your own expert knowledge to expose the prior knowledge needed to con-
struct a viable model of the material that you are teaching. You must ensure that that the students
have this prior knowledge.

• In any particular course you will be teaching a specific level of abstraction; you must explicitly
present a viable model one level beneath the one you are teaching.

• When a student makes a mistake or otherwise displays a lack of understanding, you must assume that
the student has a more-or-less consistent, but non-viable, mental model. Your task as a teacher is to
elicit this model and guide the student in its modification.

• You must provide as much opportunity as possible for individual reflection (for example, analysis of
errors) and social interaction (for example, group labs).

Clearly, each educator must decide how to apply these aphorisms in a concrete situation.
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Conclusion

My analysis of constructivism has led me to conclude that the epistemology of computer science is signif-
icantly different than that of, say, physics. Nevertheless, the basic tenet of the theory—that knowledge is
constructed by the student—applies to computer science, and its central implication is that models must be
explicitly taught.

Given the central place of constructivist learning theory and its influence on pedagogy, computer science
educators should study the theory, perform research and analyze their educational proposals in terms of
constructivism. Software and language designers should be guided by constructivist principles, though the
individuality of the construction by learners implies that no system will ever be universally easy-to-learn,
and we educators must learn how to teach these extant artifacts.
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